%0 Journal Article
%A Deng Kailian
%A Huang Rong
%A Liu Hao
%A Sun Shaoyuan
%A Tang Hainie
%T Model-guided measurement-side control for quantized block compressive sensing
%D 2019
%R 10.19682/j.cnki.1005-8885.2019.1009
%J 中国邮电高校学报(英文)
%P 82-90
%V 26
%N 2
%X To progressively provide the competitive rate-distortion performance for aerial imagery, a quantized block compressive sensing (QBCS) framework is presented, which incorporates two measurement-side control parameters: measurement subrate (S) and quantization depth (D). By learning how different parameter
combinations may affect the quality-bitrate characteristics of aerial images, two parameter allocation models are derived between a bitrate budget and its appropriate parameters. Based on the corresponding allocation models, a model-guided image coding method is proposed to pre-determine the appropriate (S, D) combination for acquiring an aerial image via QBCS. The data-driven experimental results show that the proposed method can achieve near-optimal quality-bitrate performance under the QBCS framework.
%U https://jcupt.bupt.edu.cn/CN/10.19682/j.cnki.1005-8885.2019.1009